Many physical quantities or parameters have to be measured indirectly, i.e. they need to be measured by means of other measurable components. The first chart of multi-parametric measurements is shown in Fig. 1.

Physical measurement of physical properties, such as length or mass, is often measured for relative uncertainties is:

\[\delta = \sigma / \mu \]

where \(\sigma \) is the standard deviation and \(\mu \) is the mean value of the measurement.

The measurements of three times by Wheatstone bridge made from the balancing resistor \(R_b \) and 3 tested resistors connected in different order \((R_a, R_b, R_c, R_d) \) in the circuit loop. Three values of \(R_b, R_c, R_d \) of the balance resistance are \(R_b = R_c = R_d = R \).

From these relations the following values of tested resistances can be calculated

\[R_a = R_b + R_c + R_d \]

The sensitivity matrix for relative uncertainties is:

\[S = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

For not-correlated input variables the matrix of output std. relative uncertainties is

\[\sigma_y = S \sigma_x \]

So the standard relative output quantitys are defined:

\[\delta_y = \frac{\sigma_y}{\mu_y} \]

and correlations:

\[\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \]

Wien's bridge for measurement of two terminal RC in parallel structure

The balance condition of four armed AC bridge (supplied by the sinusoidal current source), as a result of which the bridge is in equilibrium form.

\[2R_c + 2R_b \]

The process of balancing bridges rely on setting of resistance \(R_b \) and \(R_c \) alternately in this way, so every time to get minimum of zero detection.

\[R_b = \frac{R_c}{2} \]

Covariance matrix and cover region for three dimensional case

The cover region of three dimensional uncertainty for Gaussians-Student distribution is created by ellipsoid (Fig. 4). For correlation coefficients satisfy the condition

\[-1 < r_{ij} < 1 \]

Then characteristic equations for three dimensional inverse of covariance matrix \(\rho_p \)

\[\det(p) = \rho \cdot p \]

Above equation of third order has three positive real roots. The half axes of the ellipsoid are described by Cardano formulas, as follows:

\[a = \frac{1}{\sqrt{A}} \]

\[b = \frac{1}{\sqrt{B}} \]

\[c = \frac{1}{\sqrt{C}} \]

where \(k_{ij} \) - expanded coefficient of uncertainty; coefficient \(y \) and angle \(x \) are defined as:

\[k_{ij} = \sigma_{ij} / \mu_{ij} \]

As we see from non-diagonal elements of \(\Sigma \), pairs of relative uncertainties \(\sigma_{12}, \sigma_{22}, \sigma_{32} \) of output quantities are correlated with negative coefficients. In particular case, when \(\sigma_{12} = \sigma_{21} = \sigma_{23} = \sigma_{32} = 0 \), then

\[\sigma_{12} = \sigma_{23} = \sqrt{\sigma_{11} \sigma_{22}} \]

The parameter \(n+1 \) and \(n+2 \) points are defined as:

\[w_{n+1} = \frac{1}{\sqrt{n+1}} \]

\[w_{n+2} = \frac{1}{\sqrt{n+2}} \]

and the uncertainty coverage region of Gauss distribution has the 3D ellipsoidal form.