Estimation of vector uncertainties of multivariable indirect instrumental measurement systems on the star circuit example

Zygmunt Warsza¹, Jacek Puchalski ²
¹Industrial Research Institute of Automation and Measurements (PIAP), Warszawa, Poland
²Central Office of Measures (GUM), Warszawa, Poland
E-mail: zlw1936@gmail.pl, jacek.puchalski@gum.gov.pl

Abstract. Signal processing in a multi-variable indirect measurement system and its uncertainties is considered. It was proposed to extend the vector method of estimating uncertainties, given in Supplement 2 to GUM for the use to describe the accuracy of instrumental systems for indirect multivariable measurements. A formula for the covariance matrix of relative uncertainties is also given. As the example, the covariance matrix for indirect measurements of the star form circuit resistances from its terminals was determined and influence of of the measurement channels uncertainties are analyzed.

1. Introduction
Many physical quantities or parameters must be measured indirectly, i.e. other measurands should be measured on inputs and from them the tested quantities (observables) on output should be determined. The set of such jointed variables is the multivariate or vector measurand. The flow chart of the indirect multi-variable instrumental measurement system is on Fig.1.

Fig. 1. Signal processing in multi-variable indirect measurement system

Main relation and parameters of this system:

\[y = F(x) \]

\[x = [x_1, x_2, \ldots, x_n]; y = [y_1, y_2, \ldots, y_m] \] – vectors of input \(x \) and output \(y \) signals; \(\bar{x}, \bar{y}, u_x, u_y, u_{\delta x}, u_{\delta y} \) – vectors of estimators of input \(x \) and output \(y \) signals and of its standard absolute and relative uncertainties; \(U_x, U_y, U_{\delta x}, U_{\delta y} \) – their covariance matrixes, \(F(x) \), \(u_F, u_{\delta F}, U_f, U_{\delta F} \) – functional of processing \(x \) to \(y \), its standard absolute and relative uncertainties and its covariance matrixes, \(E \) – processing unit of \(y, u_y, u_{\delta y} \).

The estimation of vector \(\bar{y} \) of results \(y \) and covariance matrix of their relative uncertainties \(u_{\delta y} \) is obtained by indirect measurements of \(m \)-dimensional signal \(y \), dependent on the functional \(F(x) \). All, or some components of the resulted vector \(\bar{y} \) can be used further separately or jointly. In the latter case it is necessary to take in considerations the correlations between the uncertainties of components \(y_i \) of the output multidimensional measurand \(y \).

2. Existing state.
The accuracy of each range of measurands of multivariable instrumental measurement system is now described by the maximal value (worth case) of limited absolute error \(|A_{yi}|_{max} \). The absolute error of any output signal \(y_i \) has two components, i.e. \(\Delta_{yi} = \Delta_{yi0} + \Delta(y_i - y_{i0}) \) and then the absolute error is...
\[|\Delta y_i| \leq |\Delta y_{i0}| + |\varepsilon_i| \quad \text{for } i = 1, \ldots, m \]

where: \(\Delta y_{i0} \) - absolute error of initial value \(y_{i0} \) of the range, \(\varepsilon_i \equiv \Delta(y_i - y_{i0})/y_i \) - relative error of the difference \((y_i - y_{i0}) \).

If \(|\Delta y_{i0}| \ll |\Delta(y_i - y_{i0})| \), then the relative limited error (worth case) of the component \(y_i \) of vector \(Y \) is

\[|\Delta y_i/y_i|_{\text{max}} \cong |\varepsilon_i|_{\text{max}} \]

The recommendations for application of the method of determination of estimators of both vectors \(X \) and \(Y \) and of their covariance matrixes are described in Supplement 2 to the GUM [1]. This method of estimation of standard uncertainties of the set of single values \(y_i \) of indirectly measured components (observables) of output vector \(Y \) use the formula

\[U_Y = S \cdot U_X \cdot S^T \]

Where: \(S_{m \times n} \) - matrix of sensitivity for vector of absolute standard uncertainties \(\sigma_i \equiv u_i \), and

\(U_X, U_Y \) - covariance matrixes of \(n \) variables in input and \(m \) variables in output.

3. What is needed

The randomized description of the accuracy for the whole ranges of values of input and output signals of multi-variable measurement system, which is made both by standard and expanded uncertainties, absolute \(u \), \(U \) and relative \(u_r \), \(U_r \), for given \(P \) probability of the confidence level [1]. For \(P = 0.95 \), \(u \approx 0.95 \) \(|\Delta y_i| \) [5]. Moreover, similarly as in (2), the relative uncertainties of every input quantities of measurement systems can be estimated by single values \(\delta y_i \cong \delta u_{i} \), which remains unchanged in almost whole measuring range.

We find that for the multiplicative type of main measurement equations the relation of covariance matrixes of relative uncertainties \(\delta y_j \), \(\delta x_i \) (marked as \(u_r \) in GUM) has the similar form as (3), i.e.

\[U_{SY} = S \delta U_{SX} S^T \]

where

\[
S_\delta = \begin{bmatrix}
x_1 \frac{\partial y_2}{\partial x_1} & \cdots & x_n \frac{\partial y_1}{\partial x_n} \\
y_1 \frac{\partial x_1}{\partial x_1} & \cdots & y_1 \frac{\partial x_n}{\partial x_n} \\
\vdots & \ddots & \vdots \\
x_1 \frac{\partial y_m}{\partial x_1} & \cdots & x_m \frac{\partial y_m}{\partial x_n}
\end{bmatrix}, \quad U_{SX} = \begin{bmatrix}
\delta x_1^2 & \cdots & \rho_{x_1 x_n} \delta x_1 \delta x_n \\
\cdots & \ddots & \cdots \\
\rho_{x_1 x_n} \delta x_1 \delta x_n & \cdots & \delta x_n^2
\end{bmatrix}
\]

The recommendations of Supplement 2 to the GUM [1] does not cover situations, when the functional \(F(x) \) is not accurate, e.g. due to approximation of transfer functions, limited frequency ranges and using in signal processing AC/DC converters, analogue multipliers, and other functional elements. Therefore \(F(x) \) is also saddled with uncertainties \(u_{AF} \). Even in the most precise measurements the rounding of results also becomes essential, including the one resulting from the precision of processing in digital circuits [2], [3]. All that will be clearer on the example of indirect measurement of three resistances of the star circuit from its terminals.

4. Indirect measurement of star circuit resistances

Three, inseparably connected in star circuit resistances can be determined indirectly from three measurements of input resistances on pairs of terminals A, B, C. These values are transferring to the module of performance \(F \), in which finally the values of stair resistances are calculated.

![Fig. 2. The diagram of the star circuit with module of performance measurements](image-url)
From measurement equations

\[R_{AC} = R_1 + R_3, \quad R_{AB} = R_1 + R_2, \quad R_{BC} = R_2 + R_3 \] (6)

resistances \(R_1, R_2, R_3 \) have been carried out as

\[R_1 = \frac{R_{AB}}{2} - \frac{R_{BC}}{2} + \frac{R_{AC}}{2}; \quad R_2 = \frac{R_{AB}}{2} + \frac{R_{BC}}{2} - \frac{R_{AC}}{2}; \quad R_3 = -\frac{R_{AB}}{2} + \frac{R_{BC}}{2} + \frac{R_{AC}}{2} \] (7)

Then correction has been implemented by delete the known systematic errors. The unknown errors have been randomized as components of the type B uncertainty \(u_B \). Next the resultsants of absolute standard uncertainties \(\sigma_{AB}, \sigma_{BC}, \sigma_{AC} \) are determined (as a square of quadratic values of components of uncertainty \(u_B \)) with use of the Jacobian matrix of sensitive coefficients:

\[
S = \begin{bmatrix}
\frac{\partial R_1}{\partial R_{AB}} & \frac{\partial R_1}{\partial R_{BC}} & \frac{\partial R_1}{\partial R_{AC}} \\
\frac{\partial R_2}{\partial R_{AB}} & \frac{\partial R_2}{\partial R_{BC}} & \frac{\partial R_2}{\partial R_{AC}} \\
\frac{\partial R_3}{\partial R_{AB}} & \frac{\partial R_3}{\partial R_{BC}} & \frac{\partial R_3}{\partial R_{AC}} \\
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1 \\
\end{bmatrix}
\] (8)

- **Correlated variables in the input**

Let us consider the case when absolute uncertainties of input quantities \(\sigma_{AB}, \sigma_{BC}, \sigma_{AC} \) are correlated. Then in general the covariance matrix of input quantities has non-zero elements in non-diagonal positions. They are defined by correlation coefficients \(\rho_{AB}, \rho_{BC}, \rho_{AC} \), i.e.:

\[
U_x = \begin{bmatrix}
\sigma_{AB}^2 & \rho_{AB}\sigma_{AB}\sigma_{BC} & \rho_{BC}\sigma_{AB}\sigma_{AC} \\
\rho_{AB}\sigma_{AB}\sigma_{BC} & \sigma_{BC}^2 & \rho_{AC}\sigma_{BC}\sigma_{AC} \\
\rho_{BC}\sigma_{AB}\sigma_{AC} & \rho_{AC}\sigma_{BC}\sigma_{AC} & \sigma_{AC}^2 \\
\end{bmatrix}
\] (9)

Also, the relative uncertainties \(\delta_{AB}, \delta_{BC}, \delta_{AC} \) may be calculated. For the same relative uncertainties of the measurements \(\delta_{AB} = \delta_{BC} = \delta_{AC} = \delta \), the absolute uncertainties of input quantities are: \(\sigma_{AB} = \delta \cdot R_{AB} \), \(\sigma_{AC} = \delta \cdot R_{AC} \) and \(\sigma_{BC} = \delta \cdot R_{BC} \).

For the symmetric star resistances, i.e. when \(R_{AB} = R_{BC} = R_{AC} = R \), absolute output uncertainties are

\[
\sigma_{y1} = \frac{\delta}{2} R \sqrt{3 + 2(\rho_{BC} - \rho_{AB} - \rho_{AC})}, \quad \sigma_{y2} = \frac{\delta}{2} R \sqrt{3 + 2(\rho_{AB} - \rho_{BC} - \rho_{AC})}
\]
\[
\sigma_{y3} = \frac{\delta}{2} R \sqrt{3 + 2(\rho_{AC} - \rho_{AB} - \rho_{BC})}.
\] (10)

- **Non correlated variables in the input**

The condition of non-correlated variables is \(\rho_{AB} = \rho_{BC} = \rho_{AC} = 0 \). Then the absolute uncertainties of output quantities and the correlations coefficients are described as follows

\[
\sigma_{y1} = \sigma_{y2} = \sigma_{y3} = \frac{1}{2} \sqrt{\sigma_{AB}^2 + \sigma_{BC}^2 + \sigma_{AC}^2}, \quad \rho_{y1y2} = -\frac{\sigma_{AB} - \sigma_{BC} - \sigma_{AC}}{\sigma_{AB}^2 + \sigma_{BC}^2 + \sigma_{AC}^2}, \quad \rho_{y1y3} = -\frac{\sigma_{AB} - \sigma_{BC} - \sigma_{AC}}{\sigma_{AB}^2 + \sigma_{BC}^2 + \sigma_{AC}^2}, \quad \rho_{y2y3} = -\frac{\sigma_{AB} - \sigma_{BC} - \sigma_{AC}}{\sigma_{AB}^2 + \sigma_{BC}^2 + \sigma_{AC}^2}. \] (11)

If \(\sigma_{AB} = \sigma_{BC} = \sigma_{AC} = \sigma \) then \(\sigma_{y1} = \sigma_{y2} = \sigma_{y3} = \frac{\sqrt{3}}{2} \sigma, \quad \rho_{y1y2} = \rho_{y1y3} = \rho_{y2y3} = -\frac{1}{3} \).

Examples - summary of few solutions

- If \(\sigma_{AB} = \sigma_{BC} = \sigma_{AC} = \sigma_{in}, \rho_{AB} = \rho_{BC} = \rho_{AC} = \rho_{in}; \sigma_{out} = \sigma_{y1} = \sigma_{y2} = \sigma_{y3} = \frac{1}{2} \sigma_{in} \sqrt{3 - 2\rho_{in}}; \quad \rho_{y1y2} = \rho_{y1y3} = \rho_{y2y3} = \frac{\rho_{in} - 1}{3 - 2\rho_{in}}; \quad \rho_{y1y2}, \rho_{y1y3}, \rho_{y2y3} \leq 0. \)

- If \(\rho_{in} = 0 \) then \(\sigma_{out} = \frac{\sqrt{3}}{2} \sigma_{in} \) and \(\rho_{y1y2} = \rho_{y1y3} = \rho_{y2y3} = -\frac{1}{3} ; \)

 half of axes are: \(1.4\sigma_{in}, 2.8\sigma_{in}, 2.8\sigma_{in} \)

- If \(\rho_{in} = 1 \) then minimum \(\sigma_{out} = \frac{\sqrt{3}}{2} \sigma_{in} \), \(\rho_{y1y2} = \rho_{y1y3} = \rho_{y2y3} = 0; \quad \) radius \(1.4 \sigma_{in} \)

- If \(\rho_{in} = -1 \) then maximum \(\sigma_{out} = \frac{\sqrt{3}}{2} \sigma_{in} \), \(\rho_{y1y2} = \rho_{y1y3} = \rho_{y2y3} = -\frac{2}{3} ; \)

 half axes: \(1.4\sigma_{in}, 3.7\sigma_{in}, 3.7\sigma_{in} \)
5. The uncertainties u_F of processing circuit signals in measurement channels

The realization of performance is given by matrix equation:

$$Y = F \cdot X$$ \hspace{1cm} (13)

We are looking for uncertainty u_F which modified input signals during the analog/digital processing. Therefore, the functional matrix is also modified, and a new matrix is defined as:

$$F_S = \frac{1}{2} \begin{bmatrix} k_1 (1 + \delta_1) & -k_2 (1 + \delta_1) & k_3 (1 + \delta_1) \\ k_1 (1 + \delta_2) & k_2 (1 + \delta_2) & -k_3 (1 + \delta_2) \\ -k_1 (1 + \delta_3) & k_2 (1 + \delta_3) & k_3 (1 + \delta_3) \end{bmatrix}$$ \hspace{1cm} (14)

where $\sigma_1, \sigma_2, \sigma_3$ are coefficient dedicated to the measurend components of characteristic module of output quantities. The vector function of output quantities is additionally is perturbated by uncertainties associated with zero set errors ($\frac{\Delta u_1}{1+\delta_1}, \frac{\Delta u_2}{1+\delta_2}, \frac{\Delta u_3}{1+\delta_3}$):

$$\sigma_{y_1} = (1 + \delta_1) \left[k_1^2 \sigma_{x_1}^2 + k_1^2 \sigma_{x_2}^2 + k_1^2 \sigma_{x_3}^2 + 2(k_1 k_2 \rho_{x_1 x_2} \sigma_{x_1} \sigma_{x_2} - k_1 k_3 \rho_{x_1 x_3} \sigma_{x_1} \sigma_{x_3}) + \sigma^2 \left(\frac{\Delta u_1}{1+\delta_1} \right)^2 \right],$$

$$\sigma_{y_2} = (1 + \delta_2) \left[k_2^2 \sigma_{x_1}^2 + k_2^2 \sigma_{x_2}^2 + k_2^2 \sigma_{x_3}^2 + 2(k_2 k_3 \rho_{x_2 x_3} \sigma_{x_2} \sigma_{x_3} - k_2 k_3 \rho_{x_2 y_1} \sigma_{x_2} \sigma_{y_1}) + \sigma^2 \left(\frac{\Delta u_2}{1+\delta_2} \right)^2 \right],$$

$$\sigma_{y_3} = (1 + \delta_3) \left[k_3^2 \sigma_{x_1}^2 + k_3^2 \sigma_{x_2}^2 + k_3^2 \sigma_{x_3}^2 + 2(k_3 k_1 \rho_{x_3 x_1} \sigma_{x_3} \sigma_{x_1} - k_3 k_2 \rho_{x_3 y_1} \sigma_{x_3} \sigma_{y_1}) + \sigma^2 \left(\frac{\Delta u_3}{1+\delta_3} \right)^2 \right].$$ \hspace{1cm} (15)

Then the characteristic equations for three-dimensional inverse of covariant matrix is given by

$$\lambda^2 - \epsilon \cdot \lambda^2 + K \cdot \lambda - L = 0$$ \hspace{1cm} (16)

The valuable considerations about uncertainties of complex variables are in [6] and [7].

Several other examples of determining the uncertainties in case of multi-parameter linear and nonlinear formulas had been presented in the poster on IMEKO Congress Belfast 2018. For example, measurements of parallel RC circuit by Wien bridge, and for the transformation of RC circuit from parallel to the equivalent serial connection. The covariance matrix of relative uncertainties is also applied. The coverage region in the three-dimensional case and analytical formulas for half-axes of the ellipsoidal cover region are also given for considered examples.

Summary and Conclusion

The description accuracy of multivariate measurement instruments and systems by relative uncertainties and corresponding covariance matrixes can be the more effective as random approach then limited errors applied up to now classically.

If for example two or more parameters of the electrical element or disconnected circuit are measured indirectly together, then uncertainties of above parameters can be correlated. So, if such elements may be used together in new circuits, then obtained in measurements correlations coefficients and uncertainties should be considered in accuracy estimations of these circuits.

Literature

