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Abstract 
The study introduces the application of machine learning (ML) for surface texture metrology in decision-mak-
ing support for measurement system preliminary selection. The paper delves into the intricate data filtering 
considerations and the diverse metrological parameters involved across different measurement techniques. 
Tailored to the specifics of the measuring object, surface texture parameters, and factors such as measure-
ment technique and uncertainty, the algorithm developed offers predictive capabilities. Drawing from 
a database of available metrological devices streamlines the operator's task by predicting the appropriate 
system before conducting measurements. Preliminary results from the validation of prediction models are 
also provided. 

1. Introduction 1.1. AI in tactile surface measurements 

In 1950 mathematician and codebreaker Alan Turing In manufacturing metrology, tactile systems are still 
published a paper on the fundamental discussion of ar- the first choice for measuring high-precision parts. Its 
tificial intelligence [1]. He also asked questions about well-known and established technique guarantees an 
learning machines, such as where to start with machine easy way to compare the results with accuracy that is 
learning. Based on this inspiration, enormous progress still acceptable to the manufacturing tolerances. 
has been made with AI. Today, we use machine learning Moreover, the physics of the probe-surface interaction 
for decision-making support, big data processing, and is well described by the non-complex Newton equation, 
physical and chemical computing, from medical to me- while the optics are still quite complex with Maxwell’s. 
chanical engineering applications. It is also applied suc- These provide straightforward data processing and sim-
cessfully for metrology. ulation verifications with tactile measurement systems, 

while optical signal processing may be complicated. 
In the age of production automatisation and informati-
sation, AI solutions are also used in these techniques for 
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making measurements faster, more reliable and with 
reduced error influences. 

A. Eser et al. introduced the AI application for rough-
ness parameter (Ra) estimation of an aluminium alloy 
after milling using carbide cutting tools coated with 
CVD-TiCN in dry conditions [2]. They used cutting speed, 
depth of cut, and feed rate for predictive model classes. 
They used the Mahr Marsurf PS 10 surface roughness 
tester to measure the surface roughness of the machined 
surfaces. The authors declared the R2 = 95.6 % for test-
ing data. 

Similar work was presented by I. Abu-Mahfouz 
et al. [3]. AI was applied to predict surface roughness in 
turning based on a vibration signal analysis. 

In their study, U. Adizue et al. introduced an artificial 
intelligence (AI) powered predictive model for surface 
roughness in micro-milling hard materials [4]. They em-
ployed a feedforward artificial neural network (ANN) 
model, which underwent training, validation, and testing 
with experimental data. The resultant trained model 
demonstrates proficient prediction capabilities for sur-
face roughness, attaining a Root Mean Square Error 
(RMSE) of 0.019. 

The AI proposal application for wear-surface predic-
tion was made by A. Bustillo et al. [5]. They proposed 
parameters and the level of isotropy of the surface of 
the samples determined using a Talyscan 150 measuring 
machine (Taylor Hobson). The dataset was generated 
from a friction process experiment for 4 different out-
puts: relative loss in mass (Δm), roughness as a root mean 
square profile (Rq), roughness as reduced peak height of 
profile (Rpk) and roughness as an arithmetic mean of the 
profile (Ra). 

The machine learning application for real-time man-
ufacturing control was proposed by D. Pimenov [6]. They 
introduced methods for real-time surface roughness 
prediction, depending on the main drive power and con-
sidering tool wear. They postulated, with experiments, 
that the Random forest model has the highest accuracy 
in surface quality prediction. A similar approach was 
described by V. Dubey et al. [7] to use machine learning 
in cutting fluid to estimate the surface roughness and 
compare the experimental value to the predicted 
values. 

Application of artificial intelligence for additively man-
ufactured components metrology was comprehensively 
reviewed by T. Batu, H.G. Lemu and H. Shimels in [8]. 
The authors discussed the limitations, challenges, and 
future directions for applying AI in surface roughness 
prediction. They discussed machine-learning 
approaches. 

An interesting application of Artificial Neural Networks 
in additive surface metrology was introduced by D. Soller 
et al. [9]. The model for surface roughness Ra prediction 
of additively manufactured parts was proposed and 
proven with experimental results. Specimens produced 
by SLM with surface treatment by blasting and electrop-
olishing were measured using Taylor-Hobson Talysurf-
Intra 50 mm profilometer. The described algorithm gives 
a chance to improve the surface roughness roughly by 
60 %. 

1.2. AI in optical surface measurements 

Optical measurement systems (e.g. laser scanner, pho-
togrammetry or fringe projection systems) provide con-
tactless surface measurements with sub-μm resolution. 
Damage to the surface is easily prevented, and wear and 
tear, known from tactile measuring systems, also cannot 
occur with these systems. Massive progress in AI appli-
cation for optical surface measurements is observed. 

In the realm of surface texture measurement, light 
scattering is classified among area-integrating tech-
niques. Unlike traditional approaches that involve coor-
dinate measurements of individual surface points, light 
scattering methods delve into specific surface areas, 
providing parameters reflective of the overall texture in 
that region. Examples of measurable aspects resulting 
from light scattering, such as specular beam intensity, 
angle-resolved scatter, and angle-integrated scatter, offer 
valuable insights into the characteristics of the surface 
texture as a whole [10]. M. Liu et al. proposed a surface 
defect detection system based on light scattering and 
a supervised deep learning model [11]. They showed 
a deep convolutional neural network trained using a large 
scattering dataset. This way, surface defect information 
may be predicted using the scattering signal. The pro-
posed technique is promising for on-machine defect 
detection of surfaces with high speed and robustness. 

Digital holographic microscopy (DHM) is an interfer-
ometric method that captures 3D surface details from 
a single image in mere microseconds. Capitalizing on this 
speed, DHM excels in real-time measurements, achieving 
speeds of up to twenty frames per second in live mode. 
Its primary limitation lies in the camera's acquisition rate 
during post-processing. A stroboscopic module designed 
explicitly for periodic movements enables 3D displace-
ment measurements at frequencies reaching 25 MHz, 
utilizing brief laser pulses lasting 7.5 nanoseconds. Like 
traditional optical microscopes, the lateral resolution of 
DHM is determined by the numerical aperture of the 
microscope objective. Remarkably, DHM avoids mechan-
ical scanning and instead utilizes wavelength for vertical 
calibration. This approach showcases remarkable resist-
ance to vibrations, resulting in an impressive vertical 
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resolution of 0.1 nanometers and a repeatability of 0.001 
nanometers. With these capabilities, DHM finds its niche 
in certification metrology and proves invaluable for rapid 
topographic imaging across diverse applications, includ-
ing surface texture quality control and measuring the 
height and displacement of MEMS and MOEMS devices 
[10]. 

F. Pan et al. presented an interesting application of 
machine learning to digital holography interferometry 
[12]. They demonstrated for the first time the application 
of machine learning for assisting the sub-apertures 
stitching processes in holographic and interferometric 
systems. Compared to state-of-the-art instruments, the 
method may potentially address rapid surface quality 
measurement in realistic workshop conditions with high 
precision and low cost. 

A fundamental optical technique is interferometry. 
Variations in fringe visibility associated with optical co-
herence in an interference microscope, contingent on 
height, present a robust and non-contact sensing mech-
anism for 3D measurement and surface characterization. 
Coherence scanning interferometry expands the appli-
cation of interferometric techniques to intricate surfaces 
featuring roughness, steps, discontinuities, and complex 
structures like transparent films. Noteworthy advantages 
encompass an autofocus equivalent at every point within 
the field of view and the mitigation of unwanted inter-
ference arising from scattered light. 

C. Zuo et al. presented a comprehensive overview of 
machine learning (ML) applications in optical metrology 
[13]. The authors described many ML applications for 
analysis, pre-and post-processing images in optical 
measurements. 

For manufacturing metrology, O. Obajemu et al. pre-
sented a new machine learning approach for modelling 
the surface metrology parameters of manufactured com-
ponents [14]. Such a modelling approach can allow one 
to better understand and, as a result, control the man-
ufacturing process so that the desired surface property 
can be achieved whilst manipulating the process condi-
tions. They used an ALICONA interferometric instrument 
for areal surface measurements. 

1.3. AI for decision making-support in 
metrology 

New findings about AI and ML applications are mainly 
based on data evaluation and image processing but not 
so representatively on a complex application for the 
AI decision-making support of an operator in the meas-
urement process chain, such as what type of system 
should be used or what level of filtering should be ap-
plied. An exciting application was presented by S. Mian 

et al. for the evaluation of cylindricity [15] measured by 
a coordinate measuring machine (CMM). The proposed 
approach utilized three distinct inputs: point distribution 
schemes, the overall quantity of points, and form as-
sessment algorithms. These inputs assessed two key 
outputs: cylindricity and measurement duration. 

The adaptive form verification in coordinate metrol-
ogy was described by S. Raman et al. [16]. They showed 
that kernel methods might be successfully applied to 
recover deformation patterns on the surface of parts 
and compute minimum zones. 

The theoretical consideration of AI decision-making 
support in surface metrology was discussed by 
M. Wieczorowski et al. in the published articles [17], [18]. 
They described ML-based AI applications for tactile and 
optical systems for data processing support and the idea 
of the AI application for decision-making support in the 
measurement scenario preparation: prediction of meas-
urement system type to be used, data filtering, and more. 

In this paper, we propose the experimental answer to 
a Turing-like question: Can a machine predict and offer 
a measurement scenario for an operator? Here, the prac-
tical application of machine learning (ML) for surface 
metrology is proposed for the first time in the literature 
in this scale for surface topography measurements using 
many different measurement systems, tactile and 
non-tactile. The proposed approach describes the 
Ml-based AI algorithm for prediction of the measurement 
system type to be used when input parameters are 
known: material type of the surface, data filtering, type 
of the object (reference or not), topography parameters 
(Ra, Rz, RONt) with their uncertainties. The algorithm for 
system type prediction is freely available on the internet 
and developed in the GitHub group https://github.com/ 
dawidkucharski/AI_for_surface_metrology 

2. Method 

The prediction algorithm is based on the R. R is a pro-
gramming language and environment for statistical com-
puting and graphics. Developed at Bell Laboratories, 
R is influential in statistics and image processing and is 
highly extensible via packages [19]. It is highly competi-
tive with Python and also provides AI application pack-
ages: caret [20], keras [21], tensorfFlow [22]. The pre-
diction algorithm is supplied with an extensive dataset 
(comprising 1143 total measurements) gathered from 
diverse surfaces utilizing both contact and non-contact 
methods. This dataset is enriched with multiple meas-
urement parameters and outcome-filtering protocols. 
Each sample underwent 50 measurements under iden-
tical parameters to assess uncertainty. Monte Carlo (MC) 
simulation was employed to estimate measurement 
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uncertainties for surface irregularities, serving as input 
parameters for the algorithm. The MC measurement 
function was adapted from [23] by [24]. The presented 
algorithm is proposed to support the operator’s deci-
sion-making to determine which type of measurement 
system may be used when other information is known. 

2.1. Data processing, Experimental 
Workflow 

The data was collected using measurement systems: 
tactile profilometer (TP), coordinate measuring machine 
(CMM), round-tester (RoundScan), phase grating inter-
ferometry (PGI), and non-contact profiler, coherence 
correlation interferometry (CCI). As the samples, refer-
enced surfaces (roughness and form standards) were 
used (see eg. figs. 1 and 2 ), and machined ones (see eg. 
fig. 3). 

Figure 1. Example of roughness steel standard used for ML 
model training 

Figure 2. Ceramic form reference ball ϕ = 30 mm used for 
ML model training 

Figure 3. Steel probe plate 180x160x10 with machined 
samples mounted using ϕ4 rods 

The samples are made of steel, aluminium, brass, pol-
ymer, glass, and ceramic. For attributes in ML algorithm, 
materials are numbered as integers 1-6. In tab. 1 first 40 
rows of prepared data are shown. 

For data preparation and final ML algorithm, the knitr 
package was used to combine R and LaTeX [25-27]. 
In this way, part of the data presented in the tables might 
change after manuscript compilation, which does not 
affect the numbers shown in the results. These ap-
proaches can dramatically reduce the time required to 
complete a research project that can be trivially repli-
cated. Recent enhancements to RStudio streamline the 
entire process of output format generation via a simple 
click of an icon or keystroke shortcut (the minimum re-
quirement is R). Replicability is guaranteed using the 
checkpoint package in R. This article was written using 
Markdown. The input codes are marked as blue, while 
outputs are green in the text. 

The measurement data are stored on the iCloud disc 
with a link shared between contributors. The data format 
was not unified so the algorithm is adopted to read the 
extension type of the data in the folder. After that, to-
pography parameters like Ra, Rz measured 50 times are 
used for Monte Carlo mean value and uncertainty cal-
culations. For example, for Ra with uncertainty, the 
MC code was as follows [23]: 

Which gives the result as the confidence interval from 
the R internal bootstrap function (eq. 1): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1.56 ± 0.05 m𝜇𝜇𝜇𝜇 (95%), (1) 

where: 
Ra - mean Ra; 0.05 "mμ – uncertainty; 95 % – confidence 
interval. The collected data partially shown in tab. 1 are 
used for machine learning steps (see fig.4). 
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Table 1: First 40 lines of collected data. Surface parameters are calculated as an average from 50 repeated measurements. 
The uncertainties are calculated with the Monte Carlo method. F = 0 or 1 means the data were filtered or not. Standard = 1 when 

the surface was collected from reference object 
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> x <- c(wzNr93szlifScierTasm1_6_VP_031nr6\$Ra*1000) # example Ra data in the micron scale 
> Nx <- length(x) # number of data points in x 
> P <- 0.95 # confidence level 
> R <- 10^5 # number of times to resample the data 
> bLin <- 0.01 # linearity error 
> bRep <- 0.01 # repeatability 
> bCal <- 0.005/2 # calibration error 
> bProbe <- 0.01 # Probe error 
> boot.r <- numeric(R) # vector for r values 
> for (i in 1:R) { 
+ boot.sample.x <- sample(x,size=Nx,replace=T) # resampling pipe 
+ beta1x <- rnorm(n=1,mean=0,sd=bLin) # linearity error function 
+ #(normally distributed) 
+ beta2x <- runif(n=1, min = 0, max = 0.1) # repeatability error function 
+ #(normally dostributed) 
+ beta3x <- rnorm(n=1,mean=0,sd=bCal) # calibration error function 
+ beta4x <- bProbe # Constant probe error 
+ xs <- mean(boot.sample.x)+beta1x+beta2x+beta3x+beta4x # measurement function 
+ boot.r[i] <- xs # r vector 
+ } 
> quant<-quantile(boot.r, probs = c((1-P)/2,(1+P)/2)) 
> uncert<-mean(boot.r)-quant[[1]] # uncertainty based on quantile 
> Ra<-round(as.numeric(mean(boot.r)),digits=2); # Ra 
> Ra_uncert<-round(as.numeric(uncert),digits=2); # Ra uncertainty 

The approach is based on a simple proposal by 3. Results 
J. Brownlee applied to machine learning-based iris flower 

The calculations of the models without optimisation recognition [28]. 
gives 98.63 % accuracy for Random Forest Model (see The data are split into two parts. 70 % is used for 
fig. 6) with Kappa parameter equal 95.08 %. Kappa or training and model testing, and 30 % is used as a valida-
Cohen’s Kappa is like classification accuracy, except that tion dataset (not seen by models). Statistics are used to 
it is normalized at the baseline of random chance on monitor the interaction between attributes and classes, 
dataset. It is a more useful measure to use on problems such as the dimensions of the dataset, the types of at-
that have an imbalance in the classes (e.g. 70-30 split tributes, the levels of the class attribute, and a statistical 
for classes 0 and 1 and we can achieve 70 % accuracy summary of all attributes (see eg. fig. 5). 
by predicting all instances are for class 0). In fig. 6 the A 10-fold cross-validation test harness is applied to 
models comparison is presented. create data models and estimate their accuracy. The 

The accuracy of the Random Forest model validation, accuracy is a ratio of correctly predicted instances di-
for first tests, is on the level of 97.65 % with Kappa vided by the total number of instances in the dataset 
91.61 . The confusion matrix for measurement system multiplied by 100 to give a percentage. 
predictions is shown in tab. 2. The data (70 % of the total) are split into ten parts: 

The first results showed a high accuracy of the ma-train in 9, test on 1, and release for all combinations of 
chined learned models and predictions in the preliminary train-test splits. The process is repeated three times for 
selection of measurement system type. It is basically due each algorithm, with different data splits into ten groups 
to using precisely machined surfaces and reference ob-to get a more accurate estimate. Six models were 
jects for training and validation. It means ongoing re-tested: 
search to expand the data source used for more accurate 1. LVQ – Learning Vector Quantization, 
AI application in metrology is relevant with more random 2. CART – Classification And Regression Tree, 
objects, and here, the possibility of AI in decision-making 3. KNN – k-Nearest Neigbor Algorithm, 
support in metrology is presented for the first time in 4. GBM – Generalised Boosted Regression Models, 
literature on this scale. 5. RF – Random Forest. 

The prediction models are nonlinear. At first statistical 
look, no particular relation may be seen between 
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Figure 6. Prediction models comparison: LVQ - Learning 
Vector Quantization, CART - Classification And Regression 
Tree, KNN - k-Nearest Neigbor Algorithm, GBM - 
Generalised Boosted Regression Models, RF - Random 
Forest 

with the first preliminary results of the machine learning 
application approach. The measurement system type 
selection was chosen as the algorithm prediction of 
classes based on the selected metrological attributes. 
The Random Forest model has been found to be the 
most accurate tool for the proposed machine learning 
application.The model will be further investigated with 
more measurement data. However, the prepared algo-
rithm frame is ready to be used. The simple neural net-
work and convolution (CNN) are now investigated, and 
the results will be announced to the public soon. 

Figure 4. Flowchart of the simple machine learning algorithm 

Tab. 2. Confusion matrix 

| | CCI | CMM | PGI | RoundScan | TP | 
|:---------|:---:|:---:|:---:|:---------:|:---:| 
|CCI | 16 | 0 | 0 | 0 | 5 | 
|CMM | 0 | 5 | 0 | 0 | 0 | 
|PGI | 0 | 0 | 18 | 0 | 3 | 
|RoundScan | 0 | 0 | 0 | 10 | 0 | 
|TP | 0 | 0 | 0 | 0 | 283 | 

attributes and classes. A final decision-making model 
might be even more complicated, so the neural network 
with a convolutional neural network (CNN) is considered 
for further research. The first results with CNN are also 
auspicious, especially with an expanding results 
database. 

4. Discussion and Conclusions 

The paper presents the ongoing project for imple-
menting AI decision-making support in surface metrology 
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The results presented above yield the following Further research will focus on data collection to ex-
conclusions: pand significantly the database, with more material types, 
• The proposed machine learning application introduces 

a commendable preliminary phase in readying the 
intelligent tool for decision-making support in surface 
metrology—a concept first introduced in the literature 
and complete with preliminary experimental results. 

• The presented findings correspond to relatively high 
accuracy (with Kappa 91.61 %) of the measurement 
system type prediction using the Random Forest al-
gorithm. Overlearning issues that may be related to 
the high accuracy level have not been investigated 
yet. 

• The developed algorithm with ongoing updates is 
freely available on the internet in the GitHub group 
h t  t p s : // g i t h u b  . c o m / d a w i d k u c h a r s k i /  
AI_for_surface_metrology. 

• The algorithm has been tested using limited data, 
which will be improved with ongoing experiments with 
more measurement system types involved. 

• The freely accessed measurement data will be ex-
panded for further investigations with AI applications, 
and the presented outcomes of the paper are the first 
whistleblower to the public announcement. 

• The observed disadvantage is the high accuracy of all 
the compared models, which might be connected with 
the overlearning issue with the data from reference 
surfaces, a common problem with classical machine 
learning. This may be overcome with the advanced 
deep learning approach. 
In the paper, the experimental realisation of the the-

oretical consideration of AI decision-making support in 
surface metrology discussed by M. Wieczorowski et al. 
in the published articles [17], [18] is presented very first 
time in the literature in this scale. The AI-driven algorithm 
for a measurement system type selection has been pro-
posed here. The outcomes of the findings may be nu-
merically summarised as follows: 
• The algorithm for system type prediction was fed by 

the vast amount of data (1143 of total 
measurements). 

• The data was collected using 5 different measurement 
systems. 

• The samples were made of 6 different materials. 
• Every sample was measured 50 times with the same 

setting parameters. 
• 6 prediction models were tested. 
• The calculations of the prediction models give 

98.63 % accuracy for the Random Forest Model. 
• The Random Forest model validation accuracy for 

first tests is on the level of 97.65 %. 

surface finishing, and different geometries of the sam-
ples. More tactile and optical measurement systems will 
be involved in the investigation. The deep learning algo-
rithm based on Convolutional Neural Network (CNN) is 
currently developed based on GPU and keras [21] and 
tensorfFlow [22] in R. The first promising observation 
showed more robustness, accuracy, and independence 
due to the number of inputs compared to the classical 
machine learning approach. More details will be pub-
lished in the following papers. 
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