OBLICZANIE NIEPEWNOŚCI POMIARU DŁUGICH PŁYTEK WZORCOWYCH WZORCOWANYCH NA MASZYNIE POMIAROWEJ

Dariusz Czułek Główny Urząd Miar

1. Wprowadzenie

Zgodnie z zaleceniami normy ISO PN-EN 3650 wzorcowanie płytek wzorcowych o długościach nominalnych większych niż 100 mm wykonywane jest w pozycji poziomej. Wzorcowana płytka podparta jest na odpowiednich podporach stanowiących wyposażenie maszyny pomiarowej, umieszczonych w odległości 0,211 długości nominalnej od końców płytki, tzw. punkty Airy'go [1].

Laboratorium Długości Zakładu Długości i Kąta GUM posiada stanowisko pomiarowe (precyzyjną maszynę pomiarową 1-D wraz z interferometrem laserowym) umożliwiające wzorcowanie długich płytek wzorcowych o długościach nominalnych (125 ÷ 3000) mm.

Rys. 1. Maszyna pomiarowa 1-D

Stanowisko znajduje się w pomieszczeniu laboratoryjnym o kontrolowanej temperaturze otoczenia w granicach ($20 \pm 0,2$) °C. Pomiary długich płytek wzorcowych są wykonywane metodą interferencyjną. Płytka wzorcowa o długości nominalnej 10 mm, której błąd długości środkowej wyznaczono metodą interferencyjną, służy do wyzerowania wskazania maszyny 1-D. Pomiar wykonywany jest na maszynie 1-D z wykorzystaniem interferometru laserowego.

2. Równanie pomiaru

W trakcie wzorcowania określane jest odchylenie długości środkowej płytki wzorcowej od jej długości nominalnej opisane następującym równaniem pomiaru [2, 3, 4]:

$$d = l - l_{\rm s} + l_{\rm t} + l_{\rm E} + \delta l_{\rm pow} + \delta l_{\rm r} + \delta l_{\rm Abbe} + \delta l_{\rm cos} + \delta l_{\rm c} + \delta l_{\rm F} + \delta l_{\rm p} + \delta l_{\rm pr}$$
(1)

gdzie:

- *d* odchylenie długości środkowej płytki wzorcowej mierzonej od długości nominalnej,
- *l* długość mierzona,
- *l* długość płytki wzorcowej odniesienia,
- l_t poprawka związana z efektami termicznymi,
- $\dot{l}_{\rm E}$ poprawka związana z współczynnikiem załamania powietrza (równanie Edlena),
- $\delta l_{_{\rm DOW}}$ poprawka związana z powtarzalnością wskazań,
- δl_r poprawka związana z rozdzielczością interferometru,
- δl_{Abbe} poprawka związana z błędem Abbe'go,
- δl_{cos}^{Auve} poprawka związana z błędem cosinusowym,
- δl_c poprawka związana z lokalizacją środka płytki wzorcowej,
- δl_{F} poprawka związana z siłą nacisku końcówek pomiarowych,
- δl_p poprawka związana z przesunięciem punktów podparcia Airy'ego,
- $\delta l_{\rm nr}$ poprawka związana z prostopadłością powierzchni płytki wzorcowej.

3. Równanie niepewności pomiaru

Na podstawie równania pomiaru można przedstawić złożoną niepewność standardową wyznaczenia odchylenia długości środkowej od długości nominalnej płytki wzorcowej *L* w następujący sposób:

$$u_{c}^{2}(d) = c_{1}^{2} \cdot u^{2}(l) + c_{2}^{2} \cdot u^{2}(l_{s}) + c_{3}^{2} \cdot u^{2}(l_{t}) + c_{4}^{2} \cdot u^{2}(l_{E}) + c_{5}^{2} \cdot u^{2}(\delta l_{pow}) + c_{6}^{2} \cdot u^{2}(\delta l_{r}) + c_{7}^{2} \cdot u^{2}(\delta l_{abbe}) + c_{8}^{2} \cdot u^{2}(\delta l_{cos}) + c_{9}^{2} \cdot u^{2}(\delta l_{c}) + c_{10}^{2} \cdot u^{2}(\delta l_{F}) + (2) + c_{11}^{2} \cdot u^{2}(\delta l_{p}) + c_{12}^{2} \cdot u^{2}(\delta l_{pr})$$

gdzie współczynniki wrażliwości:

$$c_{1} = \left(\frac{\partial d}{\partial l}\right) = \frac{L}{\lambda} \qquad c_{5} = \left(\frac{\partial d}{\partial l_{pow}}\right) = 1 \qquad c_{9} = \left(\frac{\partial d}{\partial l_{c}}\right) = 1$$

$$c_{2} = \left(\frac{\partial d}{\partial l_{s}}\right) = 1 \qquad c_{6} = \left(\frac{\partial d}{\partial l_{r}}\right) = 1 \qquad c_{10} = \left(\frac{\partial d}{\partial l_{F}}\right) = 1$$

$$c_{3} = \left(\frac{\partial d}{\partial l_{t}}\right) = 1 \qquad c_{7} = \left(\frac{\partial d}{\partial l_{Abbe}}\right) = 1 \qquad c_{11} = \left(\frac{\partial d}{\partial l_{p}}\right) = 1$$

$$c_{4} = \left(\frac{\partial d}{\partial l_{E}}\right) = L \qquad c_{8} = \left(\frac{\partial d}{\partial l_{cos}}\right) = L \qquad c_{12} = \left(\frac{\partial d}{\partial l_{pr}}\right) = 1$$
(3)

4. Wielkości wejściowe

Do wielkości wpływających na wyznaczenie odchylenia długości środkowej od długości nominalnej płytki wzorcowej należą:

a) długość mierzona (*l*)

Niepewność standardowa obliczana jest na podstawie danych zawartych w świadectwie wzorcowania głowicy interferometru laserowego. Świadectwo wzorcownia podaje wartość względnej niepewności rozszerzonej określenia długości fali promieniowania laserowego przy współczynniku rozszerzenia k = 2

$$u(l) = \frac{U \cdot \lambda}{2} \cdot \frac{L}{\lambda} \tag{4}$$

Niepewność standardowa obliczana jest na podstawie danych zawartych w świadectwie wzorcowania płytki wzorcowej odniesienia. Świadectwo wzorcowania podaje niepewność rozszerzoną określenia odchylenia długości środkowej od długości nominalnej płytki wzorcowej dla współczynnika rozszerzenia k = 2

$$u(l_{\rm s}) = \frac{U}{2} \tag{5}$$

c) efekty termiczne (l_i)

Najważniejszym czynnikiem wpływającym na wyznaczenie odchylenia długości środkowej od długości nominalnej płytki wzorcowej jest pomiar temperatury płytki wzorcowej w trakcie trwania wzorcowania. Poprawka związana z efektami temperaturowymi opisana jest następującą zależnością

$$l_t = \theta \cdot \alpha \cdot L \tag{6}$$

gdzie:

 $\theta = (t-20)$ °C jest różnicą pomiędzy temperaturą płytki wzorcowej, a temperaturą 20 °C,

- α współczynnik rozszerzalności liniowej płytki wzorcowej,
- L długość nominalna płytki wzorcowej.
 Niepewność standardowa tej składowej opisana jest zależnością:

$$u^{2}(l_{t}) = \left(\frac{\partial l_{t}}{\partial \alpha}\right)^{2} \cdot u^{2}(\alpha) + \left(\frac{\partial l_{t}}{\partial L}\right)^{2} \cdot u^{2}(L) + \left(\frac{\partial l_{t}}{\partial \theta}\right)^{2} \cdot u^{2}(\theta) + \left(\frac{\partial^{2} l_{t}}{\partial \alpha \partial L}\right)^{2} \cdot u^{2}(\alpha) \cdot u^{2}(L) + \left(\frac{\partial^{2} l_{t}}{\partial L \partial \theta}\right)^{2} \cdot u^{2}(L) \cdot u^{2}(\theta) + \left(\frac{\partial^{2} l_{t}}{\partial \alpha \partial \theta}\right)^{2} \cdot u^{2}(\alpha) \cdot u^{2}(\theta)$$

$$(7)$$

przy czym

$$\left(\frac{\partial l_t}{\partial L}\right) = 0 \tag{8}$$

a stąd
$$u^{2}(l_{t}) = \left(\frac{\partial l_{t}}{\partial \alpha}\right)^{2} \cdot u^{2}(\alpha) + \left(\frac{\partial l_{t}}{\partial \theta}\right)^{2} \cdot u^{2}(\theta) + \left(\frac{\partial^{2} l_{t}}{\partial \alpha \partial \theta}\right)^{2} \cdot u^{2}(\alpha) \cdot u^{2}(\theta)$$

Współczynniki wrażliwości wynoszą:

$$\left(\frac{\partial l_t}{\partial \alpha}\right) = \theta \cdot L, \qquad \left(\frac{\partial l_t}{\partial \theta}\right) = \alpha \cdot L, \qquad \left(\frac{\partial^2 l_t}{\partial \alpha \partial \theta}\right) = L \tag{10}$$

d) współczynnik załamania powietrza $(l_{\rm p})$

Wartość poprawki $l_{\rm E}$ wynika z faktu, że mierzona długość jest odniesiona do wielokrotności długości fali świetlnej w powietrzu. Poprawka opisana jest zależnością:

$$l_{\rm E} = \left(n - n_0\right) \cdot L \tag{11}$$

gdzie:

n – wartość współczynnika załamania w powietrzu,

 n_0 – wartość współczynnika załamania w próżni ($n_0 = 1$).

Współczynnik załamania powietrza oblicza się według wzoru Edlena:

$$(n-1)_{t,p,f,x,\lambda} = \left(\left(8091,37 + \frac{2333983 \cdot \lambda^2}{130 \cdot \lambda^2 - 1} + \frac{15518 \cdot \lambda^2}{38,9 \cdot \lambda^2 - 1} \right) \cdot \frac{1 + 0,5327 \cdot (x - 0,0004)}{10^8} \right) \cdot \left(\frac{p}{93214,6} \cdot \frac{1 + 10^{-8} \cdot (0,5953 - 0,009876 \cdot t) \cdot p}{1 + 0,003661 \cdot t} \right) - RH \cdot \exp\left(A \cdot T^2 + B \cdot T + C + \frac{D}{T} \right) \cdot (12) \\ \left(3,802 - \frac{0,0384}{\lambda^2} \right) \cdot 10^{-10}$$

gdzie:

p – wartość ciśnienia atmosferycznego wyrażonego w Pa,

t – temperatura powietrza w °C,

RH – wilgotność względna wyrażona w %,

x – zawartość CO₂ w powietrzu,

(9)

 λ – długość fali świetlnej w próżni w µm,

 $A = 1,2378847 \cdot 10^{-5} \text{ K}^{-2},$ $B = -1,912316 \cdot 10^{-2} \text{ K}^{-1},$

C = 33,93711047,

 $D = -6,3431645 \cdot 10^5 \,\mathrm{K},$

T – temperatura powietrza w K.

Niepewność $u(l_{E})$ związana z poprawką na zmianę współczynnika załamania powietrza oblicza się według następującej zależności:

$$u^{2}(l_{E}) = \left(\frac{\partial l_{E}}{\partial t}\right)^{2} \cdot u^{2}(l_{Et}) + \left(\frac{\partial l_{E}}{\partial p}\right)^{2} \cdot u^{2}(l_{Ep}) + \left(\frac{\partial l_{E}}{\partial RH}\right)^{2} \cdot u^{2}(l_{ERH}) + \left(\frac{\partial l_{E}}{\partial x}\right)^{2} \cdot u^{2}(l_{Ex}) + \left(\frac{\partial l_{E}}{\partial \lambda}\right)^{2} \cdot u^{2}(l_{E\lambda}) + u^{2}(l_{Em})$$

$$(13)$$

gdzie:

$$\begin{pmatrix} \frac{\partial l_{\rm E}}{\partial t} \end{pmatrix} = -9, 6 \cdot 10^{-6} \cdot L, \quad \left(\frac{\partial l_{\rm E}}{\partial p} \right) = 2, 7 \cdot 10^{-9} \cdot L, \quad \left(\frac{\partial l_{\rm E}}{\partial RH} \right) = -8, 7 \cdot 10^{-7} \cdot L,$$

$$\begin{pmatrix} \frac{\partial l_{\rm E}}{\partial x} \end{pmatrix} = 1, 5 \cdot 10^{-4} \cdot L, \quad \left(\frac{\partial l_{\rm E}}{\partial \lambda} \right) = -1, 2, \cdot 10^{-5} \cdot L$$

$$(14)$$

e) powtarzalność wskazań (δl_{now})

W celu wyznaczenia powtarzalności wskazań czujnika pomiarowego maszyny wykonano *n* pomiarów odchylenia długości środkowej od długości nominalnej płytki wzorcowej. Niepewność standardowa obliczona jako średnie odchylenie standardowe eksperymentalne średniej wynosi:

$$u(\delta l_{\text{pow}}) = \sqrt{\frac{\sum_{k=1}^{n} (x_k - \overline{x})^2}{n \cdot (n-1)}}$$
(15)

f) rozdzielczość interferometru laserowego (δl_r)

Zmiany długości obserwowane są za pomocą cyfrowego elektronicznego urządzenia odczytowego o rozdzielczości Δ_r . Niepewność standardowa przy przyjęciu prostokątnego rozkładu prawdopodobieństwa wynosi:

$$u(\delta l_{\rm r}) = \frac{\Delta_{\rm r}}{2\sqrt{3}} \tag{16}$$

g) błąd Abbe'go (δl_{Abbe})

Oś płytki wzorcowej powinna znajdować się w osi wiązki światła interferometru laserowego. Złożoną niepewność standardową przyjęto jako wartość maksymalnego możliwego błędu Abbe'go z założeniem rozkładu prostokątnego prawdopodobieństwa:

$$u(\delta l_{\text{Abbe}}) = \frac{d \cdot \text{tg}\alpha}{\sqrt{3}} \tag{17}$$

gdzie: d – przesunięcie równoległe osi płytki wzorcowej względem osi pomiaru, α – kąt skręcenia karetki pomiarowej.

h) błąd cosinusowy (δl_{cos})

Niepewność standardową przyjęto jako maksymalną możliwą wartość błędu związanego z jego wyjustowaniem, opisanego rozkładem prostokątnym:

$$u(\delta l_{\rm cosm}) = \frac{S^2}{8 \cdot D^2 \cdot \sqrt{3}} \cdot L \tag{18}$$

gdzie: *S* – przesunięcie powrotnej wiązki laserowej odbitej od naroża sześcianu (retroreflektora) położonego w odległości *D* od głowicy interferometru laserowego.

Niepewność związana z pochyleniem kątowym α osi płytki wzorcowej względem osi pomiaru $u(\delta l_{cosp})$, przy przyjęciu prostokątnego rozkładu prawdopodobieństwa, wynosi:

$$u(\delta l_{cosp}) = \frac{(1 - \cos\alpha)}{\sqrt{3}} \cdot L \tag{19}$$

i) lokalizacja środka płytki wzorcowej (δl_c)

Norma ISO PN-EN 3650 podaje maksymalną dopuszczalna zmienność długości t_v . Zakładając, że odchylenie to będzie występować na powierzchniach pomiarowych wzdłuż krótszej krawędzi o długości b i, że długość środkową mierzono wewnątrz okręgu o promieniu r to nieosiowość punktów styku, można oszacować w następujący sposób:

$$\Delta x = \frac{t_v \cdot r}{b} \tag{20}$$

gdzie: Δx – jest wartością błędu odpowiadającego niepewności związanej ze zmiennością długości płytki wzorcowej.

Niepewność standardowa przy przyjęciu prostokątnego rozkładu prawdopodobieństwa wynosi:

$$u(\delta l_{\rm c}) = \frac{\Delta x}{\sqrt{3}} \tag{21}$$

j) siła nacisku końcówek pomiarowych (δl_{F})

Przeprowadzone badania wpływu siły nacisku końcówek pomiarowych na powierzchnię płytki wzorcowej pozwoliły określić wartość różnicy ugięcia płytki wzorcowej odniesienia i wzorcowanej pod wpływem nacisku końcówek pomiarowych. Jako złożoną niepewność standardową przyjęto maksymalną wartość różnicy ugięć. k) przesunięcie punktów podparcia (δl_p)

Badania przeprowadzone w laboratorium pozwoliły na określenie poprawki, jaką należy uwzględnić w wyniku pomiaru wówczas, gdy punkty podparcia płytki wzorcowanej uległy przesunięciu o 1 mm. Jako wartość niepewności przyjęto maksymalną wartość tej poprawki.

l) prostopadłość powierzchni pomiarowych (δl_{pr})

Norma ISO PN-EN 3650 podaje maksymalne odchylenia graniczne prostopadłości powierzchni bocznej względem powierzchni pomiarowej. Niepewność standardową przyjęto jako maksymalną wartość poprawki wynikającą z nieprostopadłości powierzchni pomiarowych.

5. Budżet niepewności

Niepewność standardowa $u(x_i)$	Źródło niepewności	Rozkład prawdopodo- bieństwa	Współczynnik wrażliwości c _i
<i>u</i> (<i>l</i>)	długość mierzona	normalny	L/λ
$u(l_t)$	efekty tetmiczne		
$u(\theta_{sc})$	– wzorcowanie czujnika	normalny	αL
$u(\theta_{sd})$	– dryft czujnika	prostokątny	αL
$u(\theta_{sg})$	– gradient temperatury	prostokątny	αL
$u(\theta_{sz})$	– zmienność temperatury	prostokątny	αL
<i>u</i> (<i>α</i>)	– współczynnik rozszerzalności liniowej	prostokątny	θL
$u(\alpha)u(\theta)$	– wyrazy wyższego rzędu	prostokątny	L
$u(\delta l_{Abbe})$	błąd Abbe	prostokątny	1
$u(\delta l_{cos})$	błąd cosinusowy	prostokątny	L
$u(l_{\rm E})$	współczynnik załamania powietrza		
$u(l_{\rm Etc})$	– wzorcowanie czujnika temperatury	normalny	-9,6E-07 L
$u(l_{\rm Etd})$	– dryft czujnika temperatury	prostokątny	-9,6E-07 L
$u(l_{\rm Etg})$	– gradient temperatury powietrza	prostokątny	-9,6E-07 L
$u(l_{\rm Etz})$	– zmiany temperatury powietrza	prostokątny	-9,6E-07 L
$u(l_{\rm Epc})$	– wzorcowanie czujnika ciśnienia	normalny	2,7E-09 L
$u(l_{\rm Epd})$	– dryft czujnika ciśnienia	prostokątny	2,7E-09 L
$u(l_{\rm ERHc})$	– wzorcowanie czujnika wilgotności	normalny	-8,7E-07 L
$u(l_{\rm ERHd})$	– dryft czujnika wilgotności	prostokątny	-8,7E-07 L
$u(l_{\rm ERHz})$	– zmiany wilgotności	prostokątny	-8,7E-07 L
$u(l_{\rm Exc})$	– wzorcowanie miernika zawartości CO ₂	normalny	1,5E-04 L
$u(l_{\rm Exd})$	– dryft miernika zawartości CO ₂	prostokątny	1,5E-04 L
$u(l_{\rm Exz})$	– zmiany CO ₂	prostokątny	1,5E-04 L

Tab. 1 Budżet niepewności

Niepewność standardowa $u(x_i)$	Źródło niepewności	Rozkład prawdopodo- bieństwa	Współczynnik wrażliwości c _i
$u(l_{Em})$	– przybliżenie matematyczne wzoru	prostokątny	L
$u(l_{\rm E\lambda})$	– długość fali w powietrzu	normalny	-1,2E-05 L
$u(\delta l_{pow})$	powtarzalność wskazań	normalny	1
$u(\delta l_r)$	rozdzielczość interferometru	prostokątny	1
$u(l_s)$	płytka wzorcowa odniesienia	normalny	1
$u(\delta l_c)$	lokalizacja środka płytki	prostokątny	1
$u(\delta l_F)$	siła nacisku końcówek pomiarowych	normalny	1
$u(\delta l_p)$	przesunięcie punktów podparcia	normalny	1
$u(\delta l_{\rm pr})$	prostopadłość powierzchni pomiarowych	normalny	1

Część IV. Niepewność w pomiarach wielkości geometrycznych

6. Niepewność rozszerzona

Przy obliczeniach niepewności pomiaru metodą klasyczną GUF (Guide Uncertainty Framework) [2] przyjmuje się współczynnik rozszerzenia k = 2 dla poziomu ufności ok. p = 95 %. Niepewność rozszerzona wynosi zatem:

$$U = k \cdot u_{\rm c} \left(d \right) \tag{22}$$

W wyniku wzorcowania podawane jest odchylenie długości środkowej od długości nominalnej płytki wzorcowej wraz z niepewnością przedstawioną w postaci kwadratowej. Najlepsza możliwość pomiarowa wzorcowania długich płytek wzorcowych na maszynie pomiarowej 1-D Laboratorium Długości Zakładu Długości i Kąta wynosi:

$$U = \sqrt{(210)^2 + (1,2)^2 \cdot L^2}$$
(23)

gdzie L wyrażone jest w mm.

7. Obliczenia metodą Monte Carlo

W 2008 roku opublikowany został przez Wspólny Komitet ds. Przewodników w Metrologii (JCGM) dokument "Evaluation of measurement data – Supplement 1 to the "Guide to the expression of uncertainty in measurement" – Propagation of distributions using a Monte Carlo method" [5]. Przedstawia on nowe podejście do sposobu wyznaczania niepewności pomiaru, zalecając metodę numeryczną Monte Carlo.

8. Program komputerowy

W Laboratorium Długości Zakładu Długości i Kąta Głównego Urzędu Miar opracowano program komputerowy, który umożliwia wyznaczenie niepewności pomiaru przy wykorzystaniu metody Monte Carlo. Program został napisany przy użyciu

Dariusz Czułek

anie	pomia	ru			
-	X6	×7	X8	29	×10
	[Parametr delta	1		
				OBLI	cz

Rys. 2. Menu użytkownika

języka Visual Basic for Applications, będącego elementem arkusza kalkulacyjnego MS Excel. Przykładowe okno programu komputerowego przedstawia rys. 2.

Program komputerowy umożliwia zdefiniowanie dowolnego matematycznego modelu pomiaru zawierającego nie więcej niż 10. wielkości wejściowych. Wielkości wejściowe mogą być opisane następującymi rozkładami prawdopodobieństwa:

- normalnym,
- prostokątnym,
- trapezowym symetrycznym,
- trapezowym niesymetrycznym,
- trójkątnym symetrycznym,
- trójkątnym niesymetrycznym,
- rozkładem t-Studenta,
- rozkładem typu U,
- gamma,
- exponencjalnym.

Po zdefiniowaniu wielkości wejściowych, a więc wpisaniu wartości estymat oraz niepewności standardowych lub granic przedziałów zmienności wielkości wejściowych program automatycznie oblicza niepewność pomiaru dla zadeklarowanego modelu matematycznego. Przykładowe okno programu z wynikami obliczeń przedstawia rys. 3.

Program komputerowy wyznacza estymatę wielkości wyjściowej, jej niepewność standardową oraz najkrótsze przedziały rozszerzenia wraz z wyznaczonymi współczynnikami rozszerzenia *k* dla 6. wartości prawdopodobieństwa. Dodatkowo tworzony jest wykres gęstości prawdopodobieństwa wielkości wyjściowej w celu jej graficznego zobrazowania.

Program umożliwia także zwalidowanie niepewności pomiaru wyznaczonej przy użyciu prawa propagacji niepewności. Rys. 4 przedstawia odpowiednie okno programu.

Metoda Monte (Carlo					
Wartość oczekiw	iana -	-0,00227				
Nepevność star	ndardovsa	0,99981				
- Matazia Mastari	Carlo .					
THE COMPLEXITY OF	k	Lewa Granica Przedziału	Prawa Granica Przedziału	Histogram	n wielkaści wyjściowej	
60,27 %	1,00468	-1,00867	1,00072	040 M.0	.44	1
90.%	1,6449	-1,64992	1,63927	8	ALL	
95 %	1,95095	-1,96122	1,95596	1		
95,45 %	1,99096	-2,00139	1,99578	1 0.45		
99 %	2,96596	-2,57674	2,99426	005		
99,73 %	2,97486	-2,9708	2,97761	+2 +2 02 04 04 02 02	CJ +2 +2 40 40 0J 0J 0J 10 14 10 20 27 52 50 Vibilit and	1
					Virial Calcula	

Rys. 3. Prezentacja wyników obliczeń niepewności pomiaru metodą Monte Carlo

	W	YZNACZ/	ANIE NIEP	WNOSCI I	IETOD	A MONTE	CARLO	
and Marine	adaptic Canad	- Manufa Maria	Cale Metrolation	ve Carlo - Metoda M	www.mailaa.	Inda Manta Carlo	Maturia Calut Public	lation 1
uacia wbiow	accarile Cranyci	1 Petoda Hono	C850 140000110		nienu liik	toos Pionte Carlo	Precode opioc incom	193014
METODA MONT	E CARLO							
Vartość oczekia	010	0,00014						
aepevność star	dardova	2,0016						
NETODA KLASP	CZNA							
destand in second to	10.0	0						
variou deserve								
appevenoić star	dardova	2						
lepeverość star	dardova	2						
appevenció star	dardowa	z						
Aepeveność star METODA MONT	edardowa	2		- METODA KLASY	24			WALDACIA -
depevenció star	edardova	2 Leve Granica Przedziału	Prava Granica Przedziału	METCON KLASY	zətək k	Lews Granica Przecziału	Prava Granica Przedziału	WALIDACIA
RETODA MONT 66,27 %	e CAPLO k 1,00209	2 Leve Granica Przedzielu -2,00225	Prava Granica Przedziału 2,01073	METODA KLAGVI 68,27 %	k I	Lews Granice Providialu	Prava Granica Przedsiału 2,0	WALIDACIA
Aspevenoić star METODA MONT 66,27 % 50 %	E CAPLO k 1,00209	2 Lerve Granica Przedziału -2,00225 -3,28814	Prava Granica Przedziału 2,01073 3,27462	HETODA KLASTI 68,27 % 90 %	2014 k 1 1,645	Leves Granice Przechiału -2,0 -1,008	Prave Granica Przedziału 2,0 3,009	WRIDACIA
Approvide star NETODA MONT 66,27 % 50 % 55 %	E CAFLO k 1,00209 1,63938 1,96296	2 Lerve Granica Przedziału -2,00025 -3,28814 -3,93531	Previa Granica Przedziała 2,01073 3,27462 3,933	METCOA KLASYN 68,27 % 90 %	2044 k 1,645 1,96	Leves Granica Przeddału 42,0 43,008 33,92	Prava Gunica Praddalu 2,0 3,000 3,92	WALDACIA TAU TAK
AREFORM MONT 66,27 % 50 % 95 % 95,45 %	E CAFLO k 1,00209 1,69938 1,96296 1,99996	2 Derve Granica Przedziału -2,00225 -3,28814 -3,99531 -4,0091	Presidentia Prostelalu 2,01073 3,27462 3,1038 2,99733	METODA KLAOV 68,27 % 90 % 95 % 95 %	2014 k 1,645 1,96 2	Leves Granice Przecisiału - 2,0 - 4,008 - 3,92 - 4,0	Prava Granica Praedala 2,0 3,000 3,02 4,0	WALIDACIA TAAI TAK TAK TAK
Alexandro Collaboration Alexandro Collaboration METCODA MORIT 66,27 % 55 % 55 % 55 % 55 %	E CABLO k 1,00209 1,60930 1,90996 2,67991	2 Derve Granice Proedition -2,00025 -3,20814 -3,99531 -4,00931 -5,11069	Press Garries Przedziała 3,27462 3,9233 3,99733 5,17722	METODA KLAGY 68,27 % 90 % 95 % 95 % 95 %	2044 k 1,645 1,78 2 2,576	Levna Granica Przedziału - 42,0 	Prava Granica Przedziału 2,0 3,000 3,92 4,0 5,152	WALIDACIA TA41 TA4 TA4 TA4 TA4 TA4

Rys. 4. Prezentacja wyników walidacji przy użyciu metody Monte Carlo niepewności pomiaru wyznaczonej za pomocą prawa propagacji niepewności

9. Wyniki obliczeń

Model matematyczny wzorcowania płytek wzorcowych metodą porównawczą opisany jest równaniem (1). W tabeli 2 przedstawiono parametry charakteryzujące wielkości wejściowe równania (1), przyjmując następujące oznaczenia: x_i – estymata wielkości wejściowej, $u(x_i)$ – odchylenie standardowe, a – szerokość połówkowa rozkładu.

W tabeli 3 zestawiono wyniki obliczeń metodą klasyczną GUF i metodą Monte Carlo (MCM), przy użyciu programu komputerowego. Przyjęto następujące oznaczenia: *d* – estymata odchylenia długości środkowej od długości nominalnej płytki wzorcowej, u(d) – niepewność standardowa odchylenia długości środkowej od długości nominalnej płytki wzorcowej, d_{low} – dolna granica przedziału rozszerzenia dla prawdopodobieństwa p = 95 %, d_{high} – górna granica przedziału rozszerzenia dla prawdopodobieństwa p = 95 %.

X_i	Rozkład	x_{i}	$u(x_i)$	а
l	normalny	1000001,1 μm	1,5E-06 µm	
l	normalny	1000000,7 μm	1,8E-02 μm	
l _t	normalny	0,5 μm	2,7E-04 μm	
l _E	normalny	0,2 μm	4,7E-05 μm	
δl_{pow}	normalny	0 μm	5,0E-03 μm	
δl_{r}	prostokątny	0 μm		2,9E-03 μm
δl_{Abbe}	prostokątny	0 μm		7,8E-03 μm
δl_{cos}	prostokątny	0 μm		5,5E-05 μm
δl_{c}	prostokątny	0 µm		1,3E-02 μm
δl_{F}	normalny	0 μm	4,4E-02 μm	
δl_{p}	normalny	0 μm	2,0E-02 μm	
$\delta l_{\rm pr}$	normalny	0 μm	1,6E-02 μm	

Tab. 2. Wielkości wejściowe równania pomiaru płytek wzorcowych

Tab. 3. Zestawienie wyników obliczeń

Metoda	d (µm)	u(d) (µm)	d _{low} (µm)	$d_{_{high}} \ (\mu m)$
GUF	1,10	0,57	0,53	1,67
МСМ	1,10	0,57	0,52	1,67

10. Podsumowanie

Przedstawiony sposób szacowania niepewności pomiaru wzorcowania długich płytek wzorcowych został stworzony zgodnie z zaleceniami Przewodnika [2]. Zastosowana metoda pozwala na oszacowanie niepewności pomiaru odchylenia długości środkowej od długości nominalnej płytki wzorcowej, co zostało potwierdzone w kluczowych porównaniach międzynarodowych długich płytek wzorcowych w ramach projektu EUROMET.L-K2.

Dodatkowo w Laboratorium Długości używany jest program komputerowy wykorzystujący metodę Monte Carlo, jako sposób obliczania niepewności pomiaru, umożliwia zwalidowanie niepewności pomiaru wyznaczonej za pomocą prawa propagacji niepewności. Dzięki prostocie obsługi, możliwe jest szybkie wyznaczenie niepewności pomiaru skomplikowanych równań pomiarowych. Metoda Monte Carlo z powodzeniem może też być wykorzystywana do obliczania i sprawdzania wyników porównań międzylaboratoryjnych.

Literatura

- [1] Wzorce długości. Płytki wzorcowe. PN-EN ISO 3650.
- [2] Wyrażanie niepewności pomiaru. Przewodnik. Główny Urząd Miar, 1999.
- [3] Wyrażanie niepewności pomiaru przy wzorcowaniu. Dokument EA-4/02, 1999.
- [4] G. Bönsch, E. Potulski: *Measurement of the refractive index of air and comparison with modified Edlén's formulae*. Metrologia, 1998, 35, 133-139.
- [5] Evaluation of measurement data Supplement 1 to the "Guide to the expression of uncertainty in measurement" – Propagation of distributions using a Monte Carlo method. JCGM 101:2008.
- [6] J. Arendarski: *Niepewność pomiarów*. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2003.
- [7] H. Szydłowski: *Teoria pomiarów*. Państwowe Wydawnictwo Naukowe, Warszawa 1981.
- [8] C. F. Dietrich: Uncertainty, Calibration and Probability. The Statistics of Scientific and Industrial Measurement. Second Edition, 1991. The Adam Hilger Series on Measurement Science and Technology.
- [9] H. W. Coleman, W. G. Steele: *Experimentation and Uncertainty Analysis for Engineers*. Second Edition. John Wiley & Sons 1999.
- [10] R. H. Dieck: *Measurement Uncertainty: Methods and Applications*. ISA-The Instrumentation, Systems, and Automation Society, 3rd edition, 2002.
- [11] I. Lira: *Evaluating the Measurement Uncertainty. Fundamental and Practical Guidance*. Series in Measurement and Technology. Institute of Physics Publishing 2002.